PDMS/ceramic composite membrane for pervaporation separation of acetone–butanol–ethanol (ABE) aqueous solutions and its application in intensification of ABE fermentation process

نویسندگان

  • Gongping Liu
  • Lin Gan
  • Sainan Liu
  • Haoli Zhou
  • Wang Wei
  • Wanqin Jin
چکیده

Pervaporation (PV) has attracted increasing attention because of its potential application in bio-butanol recovery from fermentation process. In this work, PDMS/ceramic composite membrane was employed for PV separation of acetone–butanol–ethanol (ABE) aqueous solutions. The influence of coupling effect on the molecular transport during the PV process was systematically investigated. The separation performance and transport phenomena of ABE molecules were discussed based on the analysis and calculation of physicochemical properties such as solubility parameter, polarity parameter, interaction parameter, activity coefficient. The results suggested that the ABE separation factor was mainly determined by the intrinsic solubility parameter and driving force. Coupling effect in the ABE multicomponent system was closely related to the interaction parameters between components themselves and between component and membrane. Also, the PDMS membrane was integrated with ABE fermentation to construct an efficient intensification process. It was found that the rate matching of fermentation and in situ removal could improve the ABE productivity by 2 times. ã 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High performance ceramic hollow fiber supported PDMS composite pervaporation membrane for bio-butanol recovery

In this work, ceramic hollow fiber supported polydimethylsiloxane (PDMS) composite membranes were developed by dip-coating PDMS layer on the surface of macroporous ceramic hollow fiber support. By controlling the properties of polymer solution and ceramic hollow fiber, high-quality ceramic hollow fiber supported PDMS composite membranes were fabricated for pervaporation (PV) recovery of biobuta...

متن کامل

Enhanced Bioethanol Production in Batch Fermentation by Pervaporation Using a PDMS Membrane Bioreactor

The integration of batch fermentation and membrane-based pervaporation process in a membrane bioreactor (MBR) was studied to enhance bioethanol production compared to conventional batch fermentation operated at optimum condition. For this purpose, a laboratory-scale MBR system was designed and fabricated. Dense hydrophobic Polydimethylsiloxane (PDMS) membrane was used for pervaporation. For fer...

متن کامل

Evaluation of hydrophobic micro-zeolite-mixed matrix membrane and integrated with acetone–butanol–ethanol fermentation for enhanced butanol production

BACKGROUND Butanol is regarded as an advanced biofuel that can be derived from renewable biomass. However, the main challenge for microbial butanol production is low butanol titer, yield and productivity, leading to intensive energy consumption in product recovery. Various alternative separation technologies such as extraction, adsorption and gas stripping, etc., could be integrated with aceton...

متن کامل

Composite Multi Wall Carbon Nano Tube Polydimethylsiloxane Membrane Bioreactor for Enhanced Bioethanol Production from Broomcorn Seeds

Broomcorn seed (Sorghum vulgare) was used as raw material for bioethanol production. Optimum conditions were obtained from response surface method. Broomcorn seed flour (45 g/l) was treated by alkaline treatment and dual enzymatic hydrolysis (0.7 g/l of α- amylase and 0.42 g/l of amyloglucosidase). The hydrolyzed total sugar of 25.5 g/L was used in conventional bioethanol production (8.1 g/l) u...

متن کامل

PEBA/ceramic hollow fiber composite membrane for high-efficiency recovery of bio-butanol via pervaporation

In this work, poly (ether-block-amide) (PEBA)/ceramic hollow fiber (HF) composite membranes with high flux were prepared by dip-coating the ceramic hollow fiber with PEBA polymer solution for pervaporation (PV). The membrane fabrication was optimized by finely tailoring the coating parameters such as the viscosity and concentration of PEBA coating solution, which made the pervaporation flux as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014